|
Виды графических изображений |
|
Под графической информацией можно понимать рисунок, чертеж, фотографию, картинку в книге, изображения на экране телевизора или в кинозале и т. д. Для обсуждения общих принципов кодирования графической информации в качестве конкретного, достаточно общего случая графического объекта выберем изображение на экране телевизора. Это изображение состоит из некоторого количества горизонтальных линий – строк. А каждая строка в свою очередь состоит из элементарных мельчайших единиц изображения – точек, которые принято называть пикселами (picsel – PICture'S ELement – элемент картинки). Весь массив элементарных единиц изображения называют растром (лат. rastrum – грабли). Степень четкости изображения зависит от количества строк на весь экран и количества точек в строке, которые представляют разрешающую способность экрана или просто разрешение. Чем больше строк и точек, тем четче и лучше изображение.
Строки, из которых состоит изображение, можно просматривать сверху вниз друг за другом, как бы составив из них одну сплошную линию. После полного просмотра первой строки просматривается вторая, за ней третья, потом четвертая и т. д. до последней строки экрана. Так как каждая из строк представляет собой последовательность пикселов, то все изображение, вытянутое в линию, также можно считать линейной последовательностью элементарных точек.
Рассмотрим принципы кодирования монохромного изображения при разрешении 640х480, то есть изображения, состоящего из любых двух контрастных цветов – черного и белого, зеленого и белого, коричневого и белого и т. д. Для простоты обсуждения будем считать, что один из цветов – черный, а второй – белый. Тогда каждый пиксел изображения может иметь либо черный, либо белый цвет. Поставив в соответствие черному цвету двоичный код “0”, а белому – код “1” (либо наоборот), мы сможем закодировать в одном бите состояние одного пикселя монохромного изображения. А так как байт состоит из 8 бит, то на строчку, состоящую из 640 точек, потребуется 80 байтов памяти, а на все изображение – 38 400 байтов.
Однако полученное таким образом изображение будет чрезмерно контрастным. Реальное черно-белое изображение состоит не только из белого и черного цветов. В него входят множество различных промежуточных оттенков – серый, светло-серый, темно-серый и т. д. Если кроме белого и черного цветов использовать только две дополнительные градации, скажем светло-серый и темно-серый, то для того чтобы закодировать цветовое состояние одного пикселя, потребуется уже два бита. При этом кодировка может быть, например, такой: черный цвет – 002, темно-серый – 012, светло-серый – 102, белый – 112.
Связь между количеством различных цветов — N (размером палитры) и количеством битов для их кодировки (битовой глубиной цвета) i выражается формулой:
N = 2i.
По этой формуле легко посчитать, сколько бит требуется для хранения N-цветного изображения. Например, для хранения 256-цветного изображения на один пиксель требуется 256 = 2i, i = 8 бит.
Общепринятым на сегодняшний день, дающим достаточно реалистичные монохромные изображения, считается кодирование состояния одного пикселя с помощью одного байта, которое позволяет передавать 256 различных оттенков серого цвета от полностью белого до полностью черного. В этом случае для передачи всего растра из 640x480 пикселов потребуется уже не 38 400, а все 307 200 байтов.
Цветное изображение может формироваться различными способами. Один из них – метод RGB (от слов Red, Green, Blue – красный, зеленый, синий), который опирается на то, что глаз человека воспринимает все цвета как сумму трех основных цветов – красного, зеленого и синего. Например, сиреневый цвет – это сумма красного и синего, желтый цвет – сумма красного и зеленого и т. д.
Предположим, что для кодирования каждого из цветов достаточно одного бита. Нуль в бите будет означать, что в суммарном цвете данный основной отсутствует, а единица – присутствует. Следовательно, для кодирования одного цветного пиксела потребуется 3 бита – по одному на каждый цвет. Пусть первый бит соответствует красному цвету, второй – зеленому и третий – синему. Тогда код 101(2) обозначает сиреневый цвет – красный есть, зеленого нет, синий есть, а код 110(2) – желтый цвет – красный есть, зеленый есть, синего нет. При такой схеме кодирования каждый пиксел может иметь один из восьми возможных цветов.
Цвет |
R (красный) |
G (зелёный) |
B (синий) |
Код |
|
|
|
|
000 |
|
|
|
|
001 |
|
|
|
|
010 |
|
|
|
|
011 |
|
|
|
|
100 |
|
|
|
|
101 |
|
|
|
|
110 |
|
|
|
|
111 |
Если же каждый из цветов кодировать с помощью одного байта, как это принято для реалистического монохромного изображения, то появится возможность передавать по 256 оттенков каждого из основных цветов. А всего в этом случае обеспечивается передача 256x256x256=16 777 216 различных цветов, что достаточно близко к реальной чувствительности человеческого глаза. Таким образом, при данной схеме кодирования цвета на изображение одного пикселя требуется 3 байта, или 24 бита, памяти. Этот способ представления цветной графики принято называть режимом True Color (true color – истинный цвет) или полноцветным режимом.
Векторное и фрактальное изображения.
Векторное изображение представляет собой совокупность графических примитивов (точка, отрезок, эллипс…). Базовым элементом изображения является линия. Как и любой объект, она обладает свойствами: формой (прямая, кривая), толщиной., цветом, начертанием (пунктирная, сплошная). Замкнутые линии имеют свойство заполнения (или другими объектами, или выбранным цветом). Все прочие объекты векторной графики составляются из линий. Каждый примитив описывается математическими формулами. Кодирование зависти от прикладной среды.
Растровая графика обладает существенным недостатком – изображение, закодированное в одном из растровых форматов, очень плохо “переносит” увеличение или уменьшение его размеров – масштабирование. Для решения задач, в которых приходится часто выполнять эту операцию, были разработаны методы так называемой векторной графики. В векторной графике, в отличие от основанной на точке – пикселе – растровой графики, базовым объектом является линия. При этом изображение формируется из описываемых математическим, векторным способом отдельных отрезков прямых или кривых линий, а также геометрических фигур – прямоугольников, окружностей и т. д., которые могут быть из них получены.
Фирма Adobe разработала специальный язык PostScript (от poster script – сценарий плакатов, объявлений, афиш), служащий для описания изображений на базе указанных методов. Этот язык является основой для нескольких векторных графических форматов. В частности, можно указать форматы PS (PostScript) и EPS, которые используются для описания как векторных, так и растровых изображений, а также разнообразных текстовых шрифтов. Изображения и тексты, записанные в этих форматах, большинством популярных программ не воспринимаются, они могут просматриваться и печататься только с помощью специализированных аппаратных и программных средств.
Кроме растровой и векторной графики существует еще и фрактальная графика, в которой формирование изображений целиком основано на математических формулах, уравнениях, описывающих те или иные фигуры, поверхности, тела. Но в отличии от векторной ее базовым элементом является сама математическая формула. Это приводит к тому, что в памяти компьютера не хранится никаких объектов и изображение строится только по уравнениям. При помощи этого способа можно строить простейшие регулярные структуры, а также сложные иллюстрации, которые иммитируют ландшафты. |
|
| |